skip to main content


Search for: All records

Creators/Authors contains: "Ceppi, Paulo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    El Niño–Southern Oscillation (ENSO) variability is accompanied by out‐of‐phase anomalies in the top‐of‐atmosphere tropical radiation budget, with anomalous downward flux (i.e., net radiative heating) before El Niño and anomalous upward flux thereafter (and vice versa for La Niña). Here, we show that these radiative anomalies result mainly from a sea surface temperature (SST) “pattern effect,” mediated by changes in tropical‐mean tropospheric stability. These stability changes are caused by SST anomalies migrating from climatologically cool to warm regions over the ENSO cycle. Our results are suggestive of a two‐way coupling between SST variability and radiation, where ENSO‐induced radiative changes may in turn feed back onto SST during ENSO.

     
    more » « less
  3. In a recent study, the authors hypothesize that the Clausius–Clapeyron relation provides a strong constraint on the temperature of the extratropical tropopause and hence the depth of mixing by extratropical eddies. The hypothesis is a generalization of the fixed-anvil temperature hypothesis to the global atmospheric circulation. It posits that the depth of robust mixing by extratropical eddies is limited by radiative cooling by water vapor—and hence saturation vapor pressures—in areas of sinking motion. The hypothesis implies that 1) radiative cooling by water vapor constrains the vertical structure and amplitude of extratropical dynamics and 2) the extratropical tropopause should remain at roughly the same temperature and lift under global warming. Here the authors test the hypothesis in numerical simulations run on an aquaplanet general circulation model (GCM) and a coupled atmosphere–ocean GCM (AOGCM). The extratropical cloud-top height, wave driving, and lapse-rate tropopause all shift upward but remain at roughly the same temperature when the aquaplanet GCM is forced by uniform surface warming of +4 K and when the AOGCM is forced by RCP8.5 scenario emissions. “Locking” simulations run on the aquaplanet GCM further reveal that 1) holding the water vapor concentrations input into the radiation code fixed while increasing surface temperatures strongly constrains the rise in the extratropical tropopause, whereas 2) increasing the water vapor concentrations input into the radiation code while holding surface temperatures fixed leads to robust rises in the extratropical tropopause. Together, the results suggest that roughly invariant extratropical tropopause temperatures constitutes an additional “robust response” of the climate system to global warming.

     
    more » « less